

 Sitecore Corporation

Sitecore. www.sitecore.net training@sitecore.net

Content Delivery info@sitecore.net +45 70 23 66 60

Sitecore Foundry
Developers Guide

Author: Sitecore Corporation

Date: February 27, 2008

Release: Rev. 0.9

Language: English

Sitecore® is a registered trademark. All other brand and product names are the property
of their respective holders.

The contents of this document are the property of Sitecore.
Copyright © 2001-2008 Sitecore. All rights reserved.

Sitecore Sitecore Foundry Developers Guide Page 2 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Table of Contents

Chapter 1 Introduction 4
1.1 Features 4
1.2 Standard Sitecore functionality 4

Chapter 2 Concepts 6
2.1 The Site Type 6
2.2 Standard Sitecore Components 6
2.3 Sitecore Foundry Specific Settings 6
2.4 Website Layouts and Site types 7
2.5 Security Template 8
2.6 Site Template 9
2.7 Administration Menu 9
2.8 Global Menu 9
2.9 Dictionaries 9
2.9.1 Dictionary Lcations 10
2.9.2 Example 11
2.10 Skins and Wizards 12
2.11 Modules and Module Settings 12
2.12 Site Settings 13

Chapter 3 Site Modification Tutorials 14
3.1 What does the wizard generate? 14
3.2 Default styles 16
3.3 System CSS styles 19
3.4 Form style 19
3.5 List style 21
3.6 XSL helper functions 21
3.7 Tutorials 23
3.7.1 Creating a top menu rendering 23
3.8 Using dictionary lookup in XSL controls 25
3.8.1 Built-in dictionary controls 26
3.9 Creating a new module 29
3.10 Adding a new Site Wizard step 34
3.11 Modifying the local administration menu 39

Chapter 4 Reference 42
4.1 Sitecore Foundry content structure 42
4.1.1 Foundry Content Items 42
4.1.2 Foundry Administration Items 43
4.1.3 Sitecore Foundry Modules Items 43
4.1.4 Sitecore Lookup tables items 45
4.1.5 Site Creation Wizards Items 46
4.1.6 Modules MSS items 47
4.1.7 Template Sites items 48
4.2 Site Type Components 48
4.3 Site Type Fields 49
4.3.1 Templates 50
4.3.2 Masters 51
4.3.3 Renderings 51
4.3.4 Layouts 53
4.3.5 Sub-layouts 53
4.4 The Runtime Engine 54
4.4.1 The Server class. 57
4.4.2 SiteContextManager and SiteContext 58
4.4.3 SiteTypeManager and SiteTypes 59
4.4.4 Dictionary and DictionaryManager. 60
4.4.5 ModuleManager and Module 61
4.4.6 SkinPackageManager, SkinPackage and Skin 61

Sitecore Sitecore Foundry Developers Guide Page 3 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.5 Security 62
4.5.1 The Sitecore domain 62
4.5.2 The Extranet domain 62
4.5.3 Foundry domains 62
4.5.4 Users, Groups and Roles 63
4.5.5 Setting up the Local Admin Rights 63
4.6 The structure of a site 65
4.7 Sitecore Foundry Maintenance Service 67
4.7.1 Creating a new site 68
4.7.2 Deleting a site 68
4.7.3 Checking to see if a site exists 69
4.7.4 Backup and restore a site 69
4.7.5 Work with packages 69

Chapter 5 The wizard and skin packages 71
5.1 Introduction 71
5.2 Skin Packages 72
5.3 Skin packages and site types 74
5.4 Skin Fields 74
5.4.1 Skin package data items 74
5.4.2 Skin package components 77
5.5 Preview images 81
5.6 Skin package files 81
5.7 Creating your own skin package 81
5.8 Customizing the wizard 82
5.8.1 Hiding or Removing Unwanted Steps 82
5.8.2 Adding Steps 83
5.9 Wizard generated CSS classes 84

Chapter 6 Appendix A: Configuration 86
6.1 Configuration 86
6.1.1 MSS.config 86
6.2 Sitecore Foundry specific additions to web.config 87
6.2.1 <AppSettings> 87
6.2.2 Item:saved Event Handlers 87
6.2.3 Item:deleted event handlers 87
6.2.4 Publish:end event handlers 88
6.2.5 Pipeline processors 88
6.2.6 Database changes 88
6.2.7 Indexes 89
6.2.8 Domains 89
6.2.9 Processors 89
6.2.10 xslExtensions 89
6.2.11 xslControls 89
6.2.12 controlSources 90
6.2.13 References 90
6.2.14 Settings 90
6.2.15 log4net 90
6.2.16 http Modules 91

Chapter 7 Appendix B: Wizard styling output 92
7.1 Link Example 92

Chapter 8 Appendix C: Creating a new site type manually 94
8.1 Required components 94
8.1.1 Making A New Site Type From Scratch 96

Chapter 9 Appendix D: Standard website sizes 98
9.1 Standard Sizes 98

Sitecore Sitecore Foundry Developers Guide Page 4 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 1

Introduction

Sitecore Foundry provides a framework based on the Sitecore CMS for running multiple
websites within one solution. The sites can be based on multiple different website
designs, hence the term “Multi Site Solution”. The framework is designed to isolate the
individual sites from each other and also provide individual site and global functionality.
Sitecore Foundry has a runtime engine that keeps track of the information necessary for
a site. Sitecore Foundry, in addition, consists of several web controls, user controls and
Xsl controls to help develop new sites and modules. It is necessary to understand that
when implementing new site design, most of the work is done using Standard Sitecore
functionality and the Sitecore client. This developer guide does not go into Sitecore
specific implementation issues, but explains how Sitecore Foundry is build on top of
Sitecore.

The internal code name for the Sitecore Foundry is Multi Site Solution abbreviated to
MSS, which can be seen in many places such as in the web.config file, the naming of
system dll files, in the API namespaces and in Sitecore content.

The abbreviation MSCC is short for Multi Site Control Center, which is the component
of Sitecore foundry that manages sites and site types.

1.1 Features

This developer’s guide is divided into three parts:

1. Concepts. This starts the guide by giving you an introduction to the central
concepts of Sitecore Foundry.

2. A how-to guide. Describes how to implement a new site design by looking at
how the default site type accompanying the product is composed.

3. References. A more thorough explanation of the different aspects of the system.

1.2 Standard Sitecore functionality

A large part of Sitecore Foundry uses standard Sitecore functionality to produce the end
result. The following features are part of standard Sitecore functionality used in Foundry:

 The Sitecore layout engine is used to render the sites using layouts, sublayouts
and renderings.

 WebEdit mode for editing website content.

Sitecore Sitecore Foundry Developers Guide Page 5 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 Layout-groups to render the website in normal website view and printer-friendly
view.

 Templates for defining storage for document data.

 Masters for adding templates and documents and security settings.

 Layout and rendering information stored on templates and masters for directing
the layout engine.

 Both extranet and Sitecore security, through a separate security layer build on-
top.

 Media library for storing media used on the sites.

 Language support.

Sitecore Sitecore Foundry Developers Guide Page 6 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 2

Concepts

In the following chapter the concepts of a site type, site template, dictionary, wizard,
skins, modules and site settings will be explained.

2.1 The Site Type

The Site type is a central concept in Sitecore Foundry as every site is created using a
specific site type. A Site type is a combination of a unique collection of standard Sitecore
components and Sitecore Foundry specific components and settings. These are used
along with Site templates to create the sites within the Foundry. A site type, along with its
content template can then be used to quickly create a multitude of sites all along the
same theme. These themes, set using the various settings and the website wizard can
then be tailored for each site type to give the groups of sites their own unique look and
feel.

2.2 Standard Sitecore Components

These are the standard Sitecore components within the Foundry model.

1. Templates

2. Masters

3. XSLT renderings

4. Web Controls

5. Sub Layouts

6. Layouts

7. Security

8. Media

2.3 Sitecore Foundry Specific Settings

Sitecore Foundry has several components and settings which are unique to the Foundry
and not part of the standard Sitecore model. These are;

1. Security - An initial default user and three default groups are created each time a
new site is generated by the Foundry. For more information about Security see
the concept “Security Template”, on page 8.

2. Site Template – This is where the initial content for new sites is stored. When a
new site is created using the Multi Site Control Center (MSCC) the initial content

Sitecore Sitecore Foundry Developers Guide Page 7 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

for the new site is taken from here. For more information about the site template
see the concept “2.6 Site Template”, on page 9.

3. Administration Menu – This is where the definitions of the Local Administration
Menu are held. Each Site type has its own local administration menu, so each
different site based on a different site type can have a different local
administration menu. For more information about the Administration Menu see
the concept 2.7 Administration Menu”, on page 9.

4. Global Menu – You can have different predefined menu structures for specific
site types. For more information about Global Menu’s see the concept “2.8 Global
Menu”, on page 9.

5. Dictionary items – Each site and site type has its own dictionary that overrides
the text defined in the system dictionary. For more information about site
dictionaries see the concept “2.9 Dictionaries”, on page 9.

6. Wizard type – a predefined and user definable wizards at the site type level to
customize a site. For more information about wizard types see the concept 2.10
Skins and Wizards”, on page 12.

7. Modules – This defines which modules are available for use with specific site
types. For more information about modules see the concept “2.11 Modules and
Module Settings”, on page 12”.

8. Module settings – The site specific settings override the default module settings.
For more information about Module settings see the concept “2.11 Modules and
Module Settings”, on page 12.

9. Site settings – Default settings for either site types or individual sites. For more
information about Site settings see the concept “2.12 Site Settings”, on page 13.

2.4 Website Layouts and Site types

There is a fixed one to one relationship between a website layout and a Site type. For a
unique website layout there is a unique Site type. Layout groups are used in the Foundry
model therefore there is always a normal and a print layout. A Site type, therefore, is
related to at least two physical aspx files, but can consists of as many layout files as
necessary.

If two types of sites are similar it is possible to base them on the same Site type. You can
then use settings so that layouts and renderings can differentiate between the two when
rendered to the web site. This possibility should be used with caution, however, since the
task of maintaining two slightly different sites this way can become difficult. On the other
hand the number of Site types should also be kept to a minimum, since every type
requires Sitecore resources.

Even though two sites differ in layout they could still use the same skin.

When the Sitecore Foundry product is installed only one Site type is installed which is
the default “Standard” site type. In all cases a new site type is needed to accommodate
the customer’s unique layouts.

Important: This site type should not be altered since updates to the product could
update this site type and overwrite any customizations.

In the Multi Site Control Center (MSCC) it is possible to create new Site types by cloning
the default site type and altering it to meet specific site needs. For more information on

Sitecore Sitecore Foundry Developers Guide Page 8 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

creating site types see the section “Chapter 8 Appendix C: Creating a new site type
manually”, on page 94

When creating the new html, layout and design for a unique new site and site type, the
possibilities are almost the same as in the full Sitecore product, with only a few
restrictions.

There are no restraints as to how the layout should look and it is optional as to whether
you use items such as the sitemap, contact formula, spots etc. provided by Sitecore
Foundry.

2.5 Security Template

Creating a new site based on a given site type means creating a set of predefined users
and groups with corresponding relationships. The product comes with a predefined user
named Admin and three predefined groups named Local Admin, Editor and Extranet
that are set for the Standard site type.

These predefined users and groups can be defined on the site type. This means that
whenever you create a site all the predefined users and groups on that site type will
automatically be created on the new site, saving time.

Important: It is not advisable to change the permissions and settings for these defaults
as their purpose is very specific and changing the function of the defaults will affect the
way they perform on the website. It is recommended that you create new users and
groups if you wish to create specific user and group settings.

Sitecore Sitecore Foundry Developers Guide Page 9 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

2.6 Site Template

Every site type is committed to using a specific Site template which defines the basic
document content structure. The Site template is equivalent to a standard Sitecore
website.

This consists of a root document (website front page normally called Home), default
documents (menu items), global documents, a dictionary, and a variety of global
settings. For more information about the site template see the section 4.6 The structure
of a site”, on page 65.

2.7 Administration Menu

The standard local administrator menu items are mandatory to facilitate the correct
functioning of site administration. The Local Administration menus are stored at:
Sitecore/content/Sitecore Foundry/Site Administrator Menus/

The local admin menu is linked directly to each site type. There is also the facility to add
custom menu items giving the ability to create custom Local Administration Menu’s for
each site type

2.8 Global Menu

A global menu is a common menu structure for all sites of a given site type. Using the
site template these can be designed individually for each site type. It is possible,
therefore, to force all related sites in the same company to have a common menu
structure added by defining the global menu for the related site type.

2.9 Dictionaries

A dictionary containing text items in different languages is used in Sitecore Foundry for
the many labels, buttons, dialogs and input boxes.

Text that is displayed in back-end dialogs to the administrator of the site is stored in the
standard system dictionary. All other dictionary items can be defined at the following
levels:

1. Site – Every local site holds its own dictionary.

2. Site type – Each Site type also contains a dictionary.

3. Global – At the global level a further dictionary is held.

4. System – Finally, there is the Foundry System dictionary.

Sitecore Sitecore Foundry Developers Guide Page 10 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Important: The System dictionary should not be altered since updates to the product
could update this dictionary and overwrite any customizations. If custom texts are to be
used on the system these should be placed on the global, site type or on the individual
site dictionaries as needed.

Sitecore recommend using the following rules when deciding where to put a dictionary
entry. If the item is only needed by one site, then it should be stored at the local site
level. If the entry may be need by more than one similar site then it can be stored at the
site type level. If the entry is needed by more than one site outside of site types or by all
sites then it should be stored at the Global level.

Sitecore Foundry uses a four step process in resolving the dictionary item’s in the
following order:

1. Local Site dictionary - The requested item is first searched for in the local site
dictionary.

2. Site type dictionary - If the dictionary item is not present in the local site
dictionary, the Site type dictionary is then searched.

3. Global dictionary - If the entry is neither defined in the site or the Site type
dictionaries, then the Global dictionary is used.

4. System dictionary – Finally, if it is neither defined in the site, the Site type or the
Global dictionaries, then the default system dictionary is used.

Tip: It is recommended that your local, site type and Global dictionaries are kept as up to
date as possible to prevent exceptions occurring when dictionary entries are not found,
or are found, but are blank.

2.9.1 Dictionary Locations

A site level dictionary is located under a site’s root item and is named Dictionary.

A site type level dictionary is located under a site type’s root item and is also named
Dictionary.

Sitecore Sitecore Foundry Developers Guide Page 11 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The global level dictionary is located at:
/sitecore/system/Modules/mss.

The system level dictionary is located at:
/sitecore/system/Modules/mss/System.

2.9.2 Example

To override the dictionary items used for the contact form, copy the dictionary items
(shown by the path below) to the Site type dictionary where you wish to override the
default texts.
/Sitecore/system/modules/mss/system/dictionary/system/contactform

Copy to:
/content/… …/Site type’s/Test Site type/dictionary/contactform

This will override the text used for the default system contact form on the Site type Test
Site type.

Sitecore Sitecore Foundry Developers Guide Page 12 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

2.10 Skins and Wizards

Sitecore Foundry comes with a customizable wizard and a default of 18 (eighteen)
predefined skins divided into three Skin packages: Children, Corporate and Culture
serving three completely different design branches.

It is possible to add complete new skin packages as required. Depending on
requirements you are able to configure the wizard in a variety of ways within the given
site type (e.g. to add, edit and hide Wizard steps).

The default wizard comes with a wide range of steps for setting background colors and
images, buttons, contact data and settings.

Site Wizards are stored at:
/sitecore/content/Sitecore Foundry/Site Creation/Wizards

The wizards are linked with a Site type so if a partner or customer should wish to alter
the design, it is possible to build a completely customized layout and design, so
customers can see it as their own unique corporate wizard. For more information see
section Chapter 5 The wizard and skin packages”, on page 71.

2.11 Modules and Module Settings

Sitecore Foundry compliant modules can be used on sites of a given site type. The site
type defines which modules are available and these modules can be turned on or off in
the Website Wizard. Sitecore Foundry comes with the following built-in modules:

 Activity calendar – A flexible events calendar that means that all news events of
any importance can be effectively displayed for users to see.

 Newsletters - Newsletters created by local administrators can be subscribed to
by users. This gives a business a great way to make sure that a whole group of
interested users can receive product news and other information at the click of a
button. Newsletters are very flexible and can be delivered via SMS or E-mail.

 Image collections - An effective way to collect and display sets of images.

 News Archive - The two parts of the News modules give local administrators the
ability to display a variety of news articles either globally or attached to individual
parts of the site.

Sitecore Sitecore Foundry Developers Guide Page 13 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 Mini Forum - The Mini Forum module gives site users a great way to discuss
events. Users can create threads and post replies to other threads. Overall
control of the Forum, threads and individual postings is done by local
administrators.

2.12 Site Settings

There are three levels of settings for the sites within the Foundry. There are settings
stored at local site level, site type level and system level.

Defaults settings for the system and modules are located at:
/sitecore/system/Modules/mss/Settings

The settings are retrieved in the following order.

1. Local Site Settings - Foundry first looks for the settings at a local site level.

2. Site type Settings - If it cannot find them it then moves to the settings for the site
type.

3. System Settings - Finally it retrieves the settings from the system level.

Important: The system settings should not be altered since updates to the product could
update these settings and overwrite any customizations. If custom settings need to be
used on the system these should be placed on the site type or the individual site settings
as needed.

Sitecore Sitecore Foundry Developers Guide Page 14 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 3

Site Modification Tutorials

In order to understand how a site type is implemented we will examine the default demo
site type implementation. A basic knowledge of Html, JavaScript, CSS styling, .NET, C#
& Sitecore is required.

3.1 What does the wizard generate?

Let’s take a look at how the presentation of a site is affected by the site wizard when a
user with appropriate rights makes changes to the Website Wizard.

 Each step of a wizard under /Sitecore Foundry/Site Creation/Wizards/ contains
the Step field which references the predefined wizard step located at;
/Sitecore Foundry/Administration/Lookup tables/Wizardsteps.

 Each wizard step has a layout assigned, which provides the functionality for the

step.

Sitecore Sitecore Foundry Developers Guide Page 15 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The layout defined for the wizard step calls methods, which render the
appropriate fields (for example, the drop-down menu with the list of skins or the
color selector) and update the items Site.Data and Skin.Settings according to
the selections made by the user.

The Site.Data and Skin.Settings items contain the settings defined by the
Website Wizard. These settings are used by the SkinCss.aspx page to generate
the css stylesheet dynamically as described in the following paragraph.

 The main layout contains the following stylesheet definition:

<link rel="stylesheet" type="text/css"

href="/sites/scx.scx/css/mss.skin.css" />

<link id="SkinCss" rel="stylesheet" type="text/css" href="/sitecore

modules/MSS/Wizard/Skins/SkinCss.aspx" />

The SkinCss.aspx page calls the MSS.Wizard.Skins.SkinCssPage class,
which parses the Site.Data and the Skin.Settings items and outputs the css
stylesheet. The SkinCssPage class in turn implements the CssFactory class
which contains all settings for css generation.

Sitecore Sitecore Foundry Developers Guide Page 16 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

So, if you want to create your own styles, you should implement the ICssFactory
interface.

3.2 Default styles

This section describes the styles that are used on a default Sitecore Foundry site.

The following styles are used on the main layout of the demo site.

 body.areaBody
Used in the body HTML tag to set the background color of the site.

 div.areaIdentity
Used on the main layout to set the height and background image for the identity
area.

 div.areaTopImage
Used on the main layout to set the height and background image for the top bar
area. Padding for the top bar text is also set here.

 div.areaBreadcrumb
Used on the main layout to set the background image, the font color and the
height of the breadcrumb area.

 div.areaFooter
Used on the main layout to set the background of the footer area.

 div.areaGlobal
Used on the main layout to set the padding and the “float” attribute of the global
area. Note: Not defined by the default wizard.

Sitecore Sitecore Foundry Developers Guide Page 17 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 div.areaSublayout
Used on the main layout to set the background of the columns and the content
area.

The following styles are used on sublayouts of the demo site.

 table.sublayoutTable td.spacecol
Used on sublayouts to set the spacing between the columns.
Note: Not defined by the default wizard.

 table.sublayoutTable td.leftcol
Used on sublayouts to set the background color of the left column area.

 table.sublayoutTable td.columnDivider
Used on sublayouts to set the spacing between columns.
Note: Not defined by the default wizard.

 table.sublayoutTable td.centercol
Used on sublayouts to set the background color of the center column area.

 table.sublayoutTable td.frontcol
Used on the front page sublayout to set the background color of the front page
center column area.

areaBody areaIdentity

areaTopimage

areaBreadcrumb areaGlobal

areaFooter

areaSublayout

Sitecore Sitecore Foundry Developers Guide Page 18 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 table.sublayoutTable td.rightcol
Used on sublayouts to set the background color of the right column area.

 div.MssNavigation div.navButtons input
Used on forms to set the background images for buttons.

 img.MssListArrow
Used to set icons for bullet points.

spacecol spacecol

rightcol centercol
frontcol

leftcol

c
o
lu

m
n

D
iv

id
e
r

Sitecore Sitecore Foundry Developers Guide Page 19 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

3.3 System CSS styles

All Sitecore Foundry layouts should inherit the MSS.Web.UI.Pages.SitePage class. For
instance, the following line should be located at the beginning of a layout.

<%@ Page language="c#" Inherits="MSS.Web.UI.Pages.SitePage, MSS.WebEngine"

Codepage="65001" AutoEventWireup="false"%>

The SitePage class adds the system CSS classes to the page in the same way as if they
were added at the beginning of the <head> html tag. These system CSS classes are
used in modules, forms and lists. The classes are stored in three files:

 /sitecore modules/MSS/WebEngine/CSS/MSS.Layout.css

 /sitecore modules/MSS/WebEngine/CSS/MSS.Forms.css

 /sitecore modules/MSS/WebEngine/CSS/MSS.Lines.Arrows.css

If some of the default CSS styling should be changed on a site, just override the styling
by including a css file on the layouts of a site type with the changed styling.

3.4 Form style

The MSS.Forms.css stylesheet, which is located at
/sitecore modules/MSS/WebEngine/CSS/
provides the styles for creating forms with all necessary form elements.

For instance, input fields can be formatted using four predefined widths: Full, Half, Third
and Quarter. Take a look at the following screenshot:

The classes for the input fields in this form look like this:

class=”TwoThird”, class=”Third Last”

class=”Third”, class=”TwoThird Last”

class=”Half”, class=”Half Last”.

The word Last should be added in the end of the class name to remove the padding-
right attribute.

Sitecore Sitecore Foundry Developers Guide Page 20 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

MSS.Forms.css stylesheet also provides classes for the navigation area of a form, for
instance, the upper and the lower dividers and the submit button. For example, the
dividers and the submit button of the following form

are defined by the following code:

 <div class="MssNavigation">

 <! -- Encapsulates the form buttons, is required -->

 <div class="navLine">

 </div>

 <! -- Divider line -->

 <div class="navButtons">

 <! -- Group buttons on one row and make them float to right -->

 <scx:button id="btnSend" tabindex="15" runat="server"

causesvalidation="True" validationgroup="Subscribe"></scx:button></div>

 <div class="navLine">

 </div>

 <!-- Divider line -->

 </div>

The complete code for the Contact form can be found in the
mss.website.contactform.ascx sublayout located at;

/sitecore modules/MSS/website/components/contactform/.

If any modifications to styling are required, they should be done in the following file:

/sites/_your_website_/css/MSS.Skin.css

and not in the default stylesheet MSS.Forms.css.

Sitecore Sitecore Foundry Developers Guide Page 21 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

3.5 List style

A list like the one shown above is rendered using the following stylesheets:

 /mss/WebEngine/css/MSS.Layout.css

 /mss/WebEngine/css/MSS.Lines.Arrows.css

If any modifications to the styling are required, they should be done in the following file:

/sites/_your_website_/css/MSS.Skin.css

and not in the default system stylesheets MSS.Layout.css and MSS.Lines.Arrows.css.

The following code can be used to render a list like the one shown in this section:

 <div class="sysList wizBottomLine">

 <div class="listHead">Module list</div>

 <xsl:for-each select="item">

 <li class="wizLine">

 <scx:link select="." class="wizListIcon" title="{@name}">

 <xsl:value-of select="@name"/>

 <xsl:value-of select="sc:clip(sc:striptags(mss:fld('text',

.)), 256, 1)" disable-output-escaping="yes"/>

 </scx:link>

 </xsl:for-each>

 </div>

3.6 XSL helper functions

Sitecore Foundry provides a set of XSL extension functions. The appropriate assembly is
called MSS.XslHelper. This is how the assembly is defined in web.config file:

<extension mode="on" type="MSS.XslHelper.XslHelper, MSS.XslHelper"

namespace="http://www.sitecore.net/mss" singleInstance="true"/>

Some of the extension functions are described in this section.

Sitecore Sitecore Foundry Developers Guide Page 22 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 XPathNodeIterator GetHome()
Purpose: returns site’s home page.
Use example: <xsl:variable name="home" select="mss:GetHome()" />

 XPathNodeIterator GetGlobalMenuRoot()
Purpose: returns the root of the site’s global menu.
Use example: <xsl:value-of select="mss:GetGlobalMenuRoot()"/>

 XPathNodeIterator GetGlobalDocument(string docName)
Purpose: returns a document under the Global item of the site.
Use example: <xsl:variable name="calendaritem"
select="mss:GetGlobalDocument('Event calendar')" />

 bool IsLocalDocument(XPathNodeIterator ni)
Purpose: is true if the current document is local for the current site.
Use example:
 <xsl:if test="mss:IsLocalDocument(.)">
 <sc:dot/>
 </xsl:if>

 string Path(XPathNodeIterator ni)
Purpose: returns user friendly URL of a page. If the UseFriendlyURL setting in
mss.config is enabled, the function returns an address without the “.aspx”
extension.
Use example: <a class="image" href="{mss:Path(.)}" title="{mss:fld('title',
.)}">Read more

 string Replace(string str, string oldValue, string newValue)
Purpose: replaces all occurrences of oldValue in str with newValue.
Use example:
replace all “%20” strings with the space characters (“ “)
<xsl:value-of select="mss:Replace($path, '%20', ' ')"/>

 bool IsWebEdit()
Purpose: is true if web edit mode is enabled.
Use example:
<xsl:if test="mss:IsWebEdit()">
 Web Edit Mode.
</xsl:if>

 bool IsLoggedIn()
Purpose: is true if the user is logged in.
Use example:
<xsl:if test="mss:IsLoggedIn()>
 Change settings
</xsl:if>

 void LoggedIn()
Purpose: checks if the user is logged in. If the user is not logged in, redirects to
the login page.

Sitecore Sitecore Foundry Developers Guide Page 23 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Use example: <xsl:value-of select="mss:LoggenIn()"/>

 XPathNodeIterator GetItem(string id)
Purpose: returns a item from the current database by id.
Use example: <xsl:variable name="eventItem"
select="mss:GetItem(sc:qs('eventID'))" />

 string fld(string fieldName, XPathNodeIterator item)
string fld(string fieldName, XPathNodeIterator item, string subFieldName)
Purpose: return a field value. If the value is empty in the current language, return
the value of the item in the site’s default language.
Use example: <xsl:value-of select="mss:fld('file', ., 'mediaid')"/>

 string GetFileExtension(string fileName)
Purpose: returns file extension.

 string SiteSettings(string section, string key)
string SiteSettingsLowerCase(string section, string key)
Purpose: return site setting by the key and the section.
Use example: <xsl:param name="templates"
select="mss:SiteSettingsLowerCase('templates', 'documents')" />

 string SiteData(string key)
Purpose: returns wizard generated settings.
Use example: <xsl:value-of select="mss:SiteData('Name on top')"/>

 string SiteModulesSetting(string section, string key)
Purpose: returns the module setting in the lower case.

 string SiteModulesSetting(string key)
Purpose: returns the module setting in the lower case. The key is searched for in
all sections.
Use example: <xsl:param name="templates"
select="mss:SiteModulesSetting('Calendar', 'EventTemplate')"/>

3.7 Tutorials

3.7.1 Creating a top menu rendering

This tutorial shows how to add a simple top menu rendering like the one shown in the
following image to the Sitecore Foundry demo site.

Sitecore Sitecore Foundry Developers Guide Page 24 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

1. Start Developer Center (Sitecore » Developer Center).

2. Create a new XSLT rendering. For instance, the “MSS.MainMenu” rendering with
the following code

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:sc="http://www.sitecore.net/sc"

 xmlns:dot="http://www.sitecore.net/dot"

 xmlns:mss="http://www.sitecore.net/mss"

 xmlns:dic="http://www.sitecore.net/dic"

 exclude-result-prefixes="dot sc dic mss">

<!-- output directives -->

<xsl:output method="html" indent="no" encoding="UTF-8" />

<!-- parameters -->

<xsl:param name="lang" select="'en'"/>

<xsl:param name="id" select="''"/>

<xsl:param name="sc_item"/>

<xsl:param name="sc_currentitem"/>

<!-- variables -->

<xsl:variable name="home" select="mss:GetHome()" />

<xsl:param name="templates"

select="mss:SiteSettingsLowerCase('templates', 'documents')" />

<!-- entry point -->

<xsl:template match="*">

 <xsl:apply-templates select="$home" mode="main"/>

</xsl:template>

<!--==-->

<!-- main P -->

<!--==-->

<xsl:template match="*" mode="main">

 <style>

 span.menuItem { border-right: 1px solid yellow; padding-right: 5px;

padding-left: 5px;}

 span.menuItem a { color: white; text-decoration:none;}

 </style>

 <div class="areaBreadcrumb">

 <xsl:for-each select="item[contains($templates,@template) and

mss:IsVisible(.)]">

 <xsl:sort select="@sortorder"/>

 <xsl:sort select="sc:fld('title',.)"/>

 <xsl:variable name="MenuTitle" select="sc:fld('menutitle', .)"/>

 <xsl:variable name="Title" select="sc:fld('title', .)"/>

 <sc:link>

 <xsl:choose>

 <xsl:when test="$MenuTitle != ''">

 <xsl:value-of select="$MenuTitle"/>

 </xsl:when>

 <xsl:when test="$Title != ''">

 <xsl:value-of select="$Title"/>

 </xsl:when>

Sitecore Sitecore Foundry Developers Guide Page 25 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 <xsl:otherwise>

 <xsl:value-of select="@name"/>

 </xsl:otherwise>

 </xsl:choose>

 </sc:link>

 </xsl:for-each>

 </div>

</xsl:template>

</xsl:stylesheet>

3. Add the rendering to the main layout.

4. Refresh the front page of the site and you will see a menu like this:

3.8 Using dictionary lookup in XSL controls

The following code snippet lists the public methods of the Dictionary class
MSS.Dictionaries namespace. The key parameter is the name of the dictionary item to
look for and the path is the relative path under the dictionary’s root.

namespace MSS.Dictionaries

{

Sitecore Sitecore Foundry Developers Guide Page 26 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 public class Dictionary

 {

 ...

 public string GetText(string key)

 public string GetText(string key, string language)

 public string GetText(string key, string language, string path)

 public string GetHint(string key)

 public string GetHint(string key, string language)

 public string GetHint(string key, string language, string path)

 public string GetAccessKey(string key)

 public string GetAccessKey(string key, string language)

 public string GetTabIndex(string key)

 public string GetTabIndex(string key, string language)

...

...

 }

}

The following line should be added in the xslt stylesheet declaration to make the
dictionary functionality available.

 xmlns:dic="http://www.sitecore.net/dic"

The following lines should be present in the web.config file for the dictionary
functionality to work.

<control mode="on" tag="scx:label" type="MSS.Web.UI.XslControls.Label"

assembly="MSS.WebEngine"></control>

<extension mode="on" type="MSS.XslHelper.XslDictionaryHelper, MSS.XslHelper"

namespace="http://www.sitecore.net/dic" singleInstance="true"/>

Dictionary-aware controls are described in the following section. The SiteType and
SiteContext classes also provide access to the dictionary. For more information see “4.4
The Runtime Engine”, on page 54.

3.8.1 Built-in dictionary controls

The dictionary related custom controls are derived from the common .NET controls
which belong to the System.Web.UI.WebControls namespace; the names of the
controls are the same is in the .NET namespace. The difference is that the Sitecore
Foundry controls use the Foundry dictionary to look for the text values for the attributes
text, alt (hint), Access key (shortcut), tab index and initial input values where available.

As for the Validator classes (for instance, RegularExpressionValidator,
RequiredFieldValidator), the error text is supplied by the Foundry dictionary. The
RequiredFieldValidator also checks that the initial text of an input control has been
altered before displaying the error message.

The following dictionary related custom controls are provided.

Name Description

Label Sets the accesskey, tabindex, text and alt
attribute (hint), retrieved from the dictionary,
on the label control

TextBox Sets the accesskey, tabindex, initial text
(value) and alt attribute (hint), retrieved from
the dictionary, on the text control

Sitecore Sitecore Foundry Developers Guide Page 27 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Description

Button Sets the accesskey, tabindex, text (value)
and alt attribute (hint), retrieved from the
dictionary, on the button control

Checkbox Sets the accesskey, tabindex and alt
attribute (hint), retrieved from the dictionary,
on the checkbox control

Imagebutton Sets the accesskey, tabindex and alt
attribute (hint), retrieved from the dictionary,
on the imagebutton control

Form Form control is derived from the
System.Web.UI.WebControls.Panel control
and is used to encapsulate other dictionary
custom controls. The Form control provides
the path, below the dictionary’s root, to look
for the dictionary item. Can be overwritten
on the child controls by providing their own
path.

Link Sets the accesskey, tabindex, text and alt
attribute (hint), retrieved from the dictionary,
on the link control

Radiobutton Sets the accesskey, tabindex, alt attribute
(hint), retrieved from the dictionary, on the
radiobutton control

RegularExpressionValidator Sets the accesskey, tabindex, errortext and
alt attribute (hint), retrieved from the
dictionary, on the control

RequiredFieldValidator Sets the accesskey, tabindex, errortext and
alt attribute (hint), retrieved from the
dictionary, on the control. Takes the
dictionary text control’s initial value into
account.

Common read/write properties on the controls are:

Name Description

Formname Name of the path, below the dictionary’s
root, to look for the dictionary item. All
dictionary items are located in subfolders
beneath the dictionary. If no formname is
given the control search for a parent
control of the type Form (custom control).

Sitecore Sitecore Foundry Developers Guide Page 28 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Description

DictionaryItem If dictionaryitem is not set, the name of the
control (ID) is used as key to lookup the
dictionary item in the selected path given
by formname (see above). Dictionaryitem
makes it possible to have an ID and look
for a dictionary item with another name.

Language Language to use when extracting the
values from the dictionary item.

Text Value of Text field on dictionary item

Alt Value of Hint field on dictionary item for
use on alt attributes as hints

Accesskey Value of Accesskey field on dictionary
item. Used for shortcut key (Accesskey
attribute)

Tabindex Value of Tabindex field on dictionary item.
Used for setting tab order.

To enable the controls on a layout, add the following .NET page directive at the top of
the layout:

<%@ Register TagPrefix="scx" Namespace="MSS.Web.UI.WebControls"

Assembly="MSS.WebEngine" %>

For an example, take a look at the code snippet taken from a form rendering (scx:Label
and scx:TextBox are used):

 <div class=”fldGroup”>

 <div class=”field Full”>

 <scx:Label id="lblName" runat="server"></scx:Label>

 <scx:TextBox id="txtName" tabIndex="1" runat="server" CssClass="inpFull"

 Defaultbutton="btnSubscribe"></scx:TextBox>

 </div>

 </div>

Sitecore Sitecore Foundry Developers Guide Page 29 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

3.9 Creating a new module

This section describes how to create your own module.

All modules are stored at;

/sitecore/content/mss content/Administration/Modules.

Let’s create a module which will show the number of the running sites on the server.

1. Create a new sublayout and call it SiteCount.

Sitecore Sitecore Foundry Developers Guide Page 30 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

2. Enter the Sublayout code. Switch to the Html mode by clicking Html button.

Enter control markup

<%@ Control Language="c#" AutoEventWireup="true"

Inherits="Layouts.Sitecount.SitecountSublayout"

Src="/layouts/SiteCount.ascx.cs" %>

<div style="border:solid 1px gray;">

 <div style="font-weight:bold;background-color:#f0f0f0;">Server

info</div>

 <asp:label id="txtInfoMessage" runat="server"></asp:label>

</div>

3. Create the code behind file. Switch to Edit code mode; the dialog which asks you
about creating a code behind file will appear (if the code behind file already
exists, open it).

Change code to the following:

using System;

using System.Web.UI.WebControls;

using MSS.Sites.Contexts;

namespace Layouts.Sitecount {

 public partial class SitecountSublayout : System.Web.UI.UserControl

Sitecore Sitecore Foundry Developers Guide Page 31 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 {

 protected Label txtInfoMessage;

 protected override void OnLoad(EventArgs e) {

 if(!IsPostBack)

 {

 int count = 0;

 foreach(SiteContext site in

MSS.Context.Server.Sites.GetSites(MSS.Context.CurrentDatabase))

 {

 if(site.Status == SiteContext.SiteStatus.Running)

 {

 ++count;

 }

 }

 txtInfoMessage.Text = string.Format("The server has {0}

running site{1}.", count, (count > 1) ? "s" : string.Empty);

 }

 }

 }

}

Save changes.

4. Add a new module to the module list. The new module item should be based on
the MSS.Functions template (or created from the MSS.Functions master).

Give the SiteCount name to the new module, fill the Title and Text fields and add
the SiteCount sublayout to the module. Sitecore CMS does not allow to have a
sublayout without a layout on an item. So you should specify a layout for the

Sitecore Sitecore Foundry Developers Guide Page 32 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

module. You can use the MSS.WebEngine.EmpyLayout for this purpose.

5. Enable the module on a site type. Move the SiteCount module to the Selected list
in the Site modules field of a site type.

Sitecore Sitecore Foundry Developers Guide Page 33 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

6. Enable the module on the site.
Open the site’s front-end, login to the site as a local admin, start the Site Wizard,
navigate to the Modules page, find the SiteCount module in the list and enable it
(check the checkbox).

Go to the Finish page and click Save. Now the module can be used on the site.

7. Add the module to a page.
Enter edit mode (by clicking on the Edit Content menu item from the
Administration menu). Go to the page where you want to add the module. Click
the green content marker to edit the document. Add the Site Count module to the
page by moving the Site Count module to the selected group in the Modules field
in the navigate tab.

Click Save and close the window.

Sitecore Sitecore Foundry Developers Guide Page 34 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

8. The module, which displays the number of the running sites is present on the
page now.

3.10 Adding a new Site Wizard step

This section describes how to add a new Site Wizard step which can be used to enter
the meta tag information.

1. Create a sublayout called MMS.ChooseMetatags which will be used to enter
meta tag information. Enter the following sublayout code:

<%@ Control Language="c#" AutoEventWireup="true"

Inherits="Layouts.Wizard.ChooseMetatags"

Src="/layouts/MMS.ChooseMetatags.ascx.cs" %>

<div class="fldGroup">

 <div class="field Half">

 Keywords

 <asp:TextBox ID="Keywords" runat="server" Rows="2"

TextMode="MultiLine" class="inputshort"/>

 </div>

 <div class="field Half Last">

 Description

 <asp:TextBox ID="Description" runat="server" Rows="2"

TextMode="MultiLine" class="inputshort"/>

 </div>

</div>

2. Create the code behind file with the following code:

using System;

using System.Web.UI.WebControls;

using MSS.Wizard.UserControls;

namespace Layouts.Wizard

{

 public partial class ChooseMetatags : WizardControl

Sitecore Sitecore Foundry Developers Guide Page 35 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 {

 const string sectionName = "Metatags";

 protected TextBox Keywords;

 protected TextBox Description;

 protected override void OnLoad(EventArgs e)

 {

 // Subscribe to save event

 WPage.SaveData += new EventHandler(Page_SaveData);

 if (!IsPostBack)

 {

 Keywords.Text = Settings.Setting(sectionName, "Keywords");

 Description.Text = Settings.Setting(sectionName,

"Description");

 }

 }

 void Page_SaveData(object sender, EventArgs e)

 {

 Settings.SetSetting(sectionName, "Keywords", Keywords.Text);

 Settings.SetSetting(sectionName, "Description",

Description.Text);

 }

 }

}

3. Add a wizard step.
All wizard steps are located at;
/sitecore/content/mss content/Administration/Lookup tables/Wizardsteps
For more information about the wizard steps, refer to 5.8 Customizing the
wizard”, on page 82.
Add the MSS.Metatags step.

4. Assign the created sublayout to the MSS.Metatags step item. Sitecore CMS
does not allow to have a sublayout without a layout on an item. So you should
specify a layout for the module. You can use the MSS.WebEngine.EmpyLayout

Sitecore Sitecore Foundry Developers Guide Page 36 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

for this purpose.

 Add the step to the wizard.
Select a wizard and add a page with the ConfigureMetaTags name.

Fill the item fields as shown below.

Title - Configure meta tags.
Menutitle – Metatags
Step – select the step created in this tutorial.
Text – enter the description to this page.
PreviewPostback – enable this checkbox. If you enable this checkbox, the
HTML form will be submitted when we click preview or select a menu item.

5. Add an item which will store the new information.
In order to save the new information you should add an item to site settings which
will contain the meta data information (keywords and description). For this
purpose we will create a new template with two fields: Keywords and Description.
Then we will add an item based on this template to the Site Wizard settings.

Sitecore Sitecore Foundry Developers Guide Page 37 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Using the Template Manger create the MSS.Site.Metatags template under the
/templates/mss/ folder.

Add two text fields to the template called Keywords and Description respectively.

Add an item called Metatags based on this template to the site wizard settings.

Sitecore Sitecore Foundry Developers Guide Page 38 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Open the front-end, go to the Site Wizard, and to the Metatags page. Fill the appropriate

fields.

Go to the Finish wizard page and click Save.

The keyword and description information will be saved in the site settings item.

Use the following code to access this information:

 string keywords = MSS.Context.Site.SiteData.Setting("Metatags", "Keywords");

 string desc = MSS.Context.Site.SiteData.Setting("Metatags", "Description");

Sitecore Sitecore Foundry Developers Guide Page 39 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

3.11 Modifying the local administration menu

The local administration menu items are stored under the following item:

/sitecore/content/Sitecore Foundry/Administration/Site Administrator Menus

The “Site Administrator Menus” folder contains subfolders which contain the actual
administration menus. A root item (for instance, the SCX.SCX item) has two masters
assigned: MSS.Menu.Folder and MSS.Menu.Item. MSS.Menu.Folder is used to create
folders in the administration menu and MSS.Menu.Item is used to create the menu items
themselves.

The MSS.Menu.Item template contains the following fields:

 Image
The image which is displayed in the content area of the site layout when the
menu link is selected.

 Imagelink
The page where a user will be redirected when one clicks on the image.

 Title
The title which is displayed in the content area of the site layout below the image
when the menu link is selected.

 Abstract
The text which is displayed in the content area of the site layout below the title
when the menu link is selected.

 Text
The text which is displayed in the content area of the site layout below the
abstract when the menu link is selected.

 Menu title
The title which is shown in the menu

 Menulink
The link which is opened when a user selects the menu item. The layout settings
of the menu item are ignored when this field is not empty. If this field is empty, the
layout assigned to the menu item will be rendered.

 Webedit mode
The mode in which the given menu item will be visible. The valid values are:

o Empty (no value) – default value. The item is visible in all modes.

Sitecore Sitecore Foundry Developers Guide Page 40 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

o None – the item is visible in all modes except Webedit.
o Preview – the item is visible only in the Preview mode.
o Webedit – the item is visible only in Webedit mode.

 Required modules
The menu item will only be visible when one of the modules listed in this field is
active. If no module is selected, the field is ignored.

 MssSecurityRight
The security role which has access to this item.

For example, consider the menu item with the following field values entered:

 Item name – Manage Navigation and Sorting.

 Image - /Downloaded picture series/Default pictures/Image01

 Imagelink – empty

 Title - Manage Navigation and Sorting

 Abstract – empty

 Text – empty

Sitecore Sitecore Foundry Developers Guide Page 41 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 Menu title - Manage Navigation

 Menulink – empty (the MSS.WebEngine.Reorganize layout is rendered)

 Webedit mode - Webedit

 Required modules - empty

MssSecurityRight – ContentEditing

Sitecore Sitecore Foundry Developers Guide Page 42 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 4

Reference

This chapter deals with various references within the Foundry and their structure and
function.

4.1 Sitecore Foundry content structure

In this section we show the key paths within the Foundry that are critical to its
functionality.

Note: The following paths within Sitecore Foundry are key to the product and should not
be changed.

4.1.1 Foundry Content Items

 /sitecore/content/mss content
All Sitecore Foundry related content is stored here, except for the system specific
content.

 /sitecore/content/mss content/administration
Central administration information.

 /sitecore/content/mss content/websites
All websites are stored here when duplicated from a site template.

Sitecore Sitecore Foundry Developers Guide Page 43 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.1.2 Foundry Administration Items

 /mss content/Administration/Global menus
Global menus that can be appended to a site’s normal content are stored here.

 /mss content/Administration/Site Administrator Menus
Local administrator menus are stored here.

4.1.3 Sitecore Foundry Modules Items

Sitecore Sitecore Foundry Developers Guide Page 44 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 /mss content/Administration/Modules

All Sitecore Foundry modules are stored here. Each module contains the
following fields:

o Title – defines the module title;
o Text – defines the short description of the module. You can see this

description in the Site Wizard.
o Is spot – defines whether the module is a spot. If the module is a spot it

will be rendered in a left or right column. If not, the module will be
rendered in the central column of the site.

o Type – defines which class this module implements. The class should
implement the IModule interface. If the field is empty, the
MSS.Modules.Module type is used. The interface IModule is shown
below.

 public interface IModule
 {
 string Title { get; }
 string Description { get; }
 string LicenseKey { get; }
 bool IsSpot { get; }
 ID ID { get; }
 Item Item { get; }

 Control[] GetRenderings(Page page);

 void CreateSite(SiteContext site);
 void DeleteSite(SiteContext site);

 XmlNode Backup(SiteContext site);
 void Restore(SiteContext site, XmlNode moduleData);
 }

Sitecore Sitecore Foundry Developers Guide Page 45 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.1.4 Sitecore Lookup tables items

 /mss content/Administration/Lookup tables/Sitestatus
Lookup tables for system use. Site type information is stored here at “Sitetypes”.

 /mss content/Administration/Lookup tables/Sitetypes
All Site types are stored here.

 /mss content/Templates/Sites
All site templates are stored here.

Sitecore Sitecore Foundry Developers Guide Page 46 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.1.5 Site Creation Wizards Items

 /mss content/site creation/wizards
All wizards are stored here.

Sitecore Sitecore Foundry Developers Guide Page 47 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.1.6 Modules MSS items

 /sitecore/system/modules/mss
Sitecore Foundry system related information is held here.

 /mss content/Templates/Sites
Site templates used to duplicate when a new site is created. Which site template
is used depends on the site type.

Sitecore Sitecore Foundry Developers Guide Page 48 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.1.7 Template Sites items

 /mss content/Templates/Sites
Site templates used to duplicate when a new site is created. Which site template
is used depends on the site type.

4.2 Site Type Components

A site type is given a unique name that is used to prefix the names of all the components
the site type consists of. This is to help the developer differentiate between all the
system components and the individual site type components.

Information about all Site types is stored at:

/sitecore/content/mss content/Administration/Lookup tables/Sitetypes

Before creating a new layout and design for a new site type for the first time, take a look
at the layout of the demo website accompanying the product.

Sitecore Sitecore Foundry Developers Guide Page 49 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Take note of how the Wizard settings and /system components are assembled to form
the website.

If the standard website functionality with sitemap, contact form, search and module
functionality is required, the structure of the content on the following path in a local site
must be preserved.

/sitecore/content/mss/Templates/Sites/sitetypename/Global/

The standard Sitecore Foundry website consists of the components listed in the following
tables. The HTML contained in the renderings and layouts can be modified as much as
needed, and so can the templates and masters to suit the needs of the site type.
However, care must be taken when altering the renderings, layouts, templates and
masters as it can affect the way the modules are displayed.

4.3 Site Type Fields

The site type contains the following fields:

Field Purpose Related item path

Title The name of the site type in different
languages

-

Key For internal use -

Sitecore Sitecore Foundry Developers Guide Page 50 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Field Purpose Related item path

Site modules Selects which modules are available
for the sites based on this site type.

/sitecore/content/mss
content/Administration/Mo
dules

Site
globalmenu

Selects the global menu items to
append to the site’s menu for all sites
of this site type.

/sitecore/content/mss
content/Administration/Glo
bal Menus

Site
Administrator
Menu

Selects the back-end administration
menu to use. Some of the items on
the menu (e.g. “reorganize” and
“help/manual”) rely on the normal
standard Sitecore layout to render
content into the running website. In
future versions this content will be put
into popup dialogs.

/sitecore/content/mss
content/Administration/Site
Administrator Menus

Site template Selects the site content to be
duplicated and used when new sites
are created. The use of the site
template and Administrator menu are
connected through the use of the
masters, templates, renderings and
layouts on these items.

/sitecore/content/mss
content/Templates/Sites

Site Wizard Selects the wizard to use /sitecore/content/mss
content/Site
Creation/Wizards

4.3.1 Templates

The following table shows the templates used in a site type. Additional templates can be
added to a site type, but remember to register them on the site type settings in order for
them to be displayed in the sitemaps and menus. Sitecore stores layouts and renderings
on templates and masters. Therefore, each site has its own templates and masters for
items that are rendered by the Sitecore layout engine.

Name Purpose

xxx.DocRef Document appendix. Text documents that can be attached
to a standard document as an appendix. It is not shown in
the menu but listed on the main document. Fields: Image,
Imagelink, title abstract and text.

xxx.Document Standard document template containing fields: Image,
Imagelink, title abstract, text, menu title, menulink, modules
(Multilist showing which modules are attached to the
document), Hide update information (“HideUpdateInfo”
which hides the document footer that says who updated the
document last) and the number of random spots shown to
the right.

xxx.Event Calendar event item used when creating new events on the
calendar

Sitecore Sitecore Foundry Developers Guide Page 51 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Purpose

xxx.FileRef File appendix used to append files to a document.

xxx.News News article item used when creating news articles using
the news module

xxx.PictureSeries.Picture Picture series picture template used when creating picture
series

xxx.PictureSeries Picture series template used when creating picture series

xxx.Spot Spot template used for adding spots to a document.

4.3.2 Masters

The following table shows the masters that make up a site type. Additional masters can
be added to a site type.

Name Purpose

xxx.DocRef Document appendix. Text documents that can be
attached to a standard document as an appendix. It is
not shown in the menu but listed on the main document.
Fields: Image, Imagelink, title abstract and text.

xxx.Document.SingleColumn Document master using layout settings to display only
one column that are stretched and no spots/highlights.
Uses the same xxx.document template as master
xxx.TwoColumns

xxx.Document.TwoColumns Document master using the template’s layout settings to
display the default two column layout.

xxx.Event Calendar event item used when creating new events on
the calendar

xxx.FileRef File appendix used to append files to a document.

xxx.News News article master used when creating news articles
using the news module

xxx.PictureSeries.Picture Picture series picture master used when creating picture
series

xxx.PictureSeries Picture series master used when creating picture series

xxx.Spot Spot master used for adding spots to a document.

4.3.3 Renderings

The following table shows the renderings that make up a site type. Additional renderings
can be added to a site type

Name Purpose File

xxx.bottombar Displays the contact
information at the
bottom of the page.

“/sites/xxx/xsl/xxx.bottombar.xslt”

Sitecore Sitecore Foundry Developers Guide Page 52 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Purpose File

xxx.Breadcrumb Used to display the
breadcrumb path into
the site content

“/sites/xxx/xsl/xxx.breadcrumb.xslt”

xxx.Document Used to display the
content of a document
with both single and
double columns.

“/sites/xxx/xsl/xxx.document.xslt”

xxx.DocumentFooter Used to display the
name and time of the
last the person that
edited the current
document.

“/sites/xxx/xsl/xxx.Documentfooter.xslt”

xxx.DocumentList Displays the document
and file appendices.
This rendering is not
used by default.
Instead a generic
system document list
rendering is used. If not
satisfactory use this
rendering instead and
modify it.

“/sites/xxx/xsl/xxx.DocumentList.xslt”

xxx.Frontpage Displays the front page
center column, which is
often different from the
normal document
display.

“/sites/xxx/xsl/xxx.Frontpage.xslt”

xxx.Highlight Displays the spots in
the right column on two
column pages.

“/sites/xxx/xsl/xxx.Frontpage.xslt”

xxx.Leftmenu Displays the menu in
the left side.

“/sites/xxx/xsl/xxx.Leftmenu.xslt”

xxx.SearchResults Displays the search
results. This rendering
is not used by default.
Instead a generic
system search results
rendering is used. If not
satisfactory use this
rendering instead and
modify it.

“/sites/xxx/xsl/xxx.Searchresults.xslt”

Sitecore Sitecore Foundry Developers Guide Page 53 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Purpose File

xxx.Sitemap Displays the sitemap.
This rendering is not
used by default.
Instead a generic
system sitemap
rendering is used. If not
satisfactory use this
rendering instead and
modify it.

“/sites/xxx/xsl/xxx.sitemap.xslt”

xxx.Top Displays the top bar
containing the wizard
generated image and
name for the site.

“/sites/xxx/xsl/xxx.Top.xslt”

As stated in the above table renderings DocumentFooter, SearchResults and Sitemap
are not used by default. Instead generic system renderings are used. The three
renderings are included in case the default renderings are unsatisfactory. You can then
use these renderings instead, modify them and set them on the respective items under
global on the document template and masters.

4.3.4 Layouts

The following table shows the layout of a site type. Additional layouts can be added to a
site type. When creating new layouts be sure to inherit the page from the
“MSS.Web.UI.Pages.SitePage” class.

Name Purpose Files

xxx.Mainlayout

(MainLayout.Normal,
MainLayout.Print)

A standard Foundry
site uses only one
main layout and two
or more sub-layouts
containing specific
renderings and
placeholders for
documents,
modules etc.

“/sites/xxx/layouts/xxx.MainLayout.aspx”

and “print” layout for printing content.

“/sites/xxx/layouts/xxx.PrintLayout.aspx”

4.3.5 Sub-layouts

The following table shows the sub-layouts a site type consists of. Additional sub-layouts
can be added to a site type. When creating new sub-layouts be sure to inherit the page
from the “MSS.Web.UI.UserControls.SiteControl” class.

Name Purpose File

xxx.SingleColumn Used for single
column layout

/sites/xxx/layouts/xxx.SingleColumn.ascx

xxx.TwoColumns Used for
standard two
column layout

/sites/xxx/layouts/xxx.TwoColumns.ascx

Sitecore Sitecore Foundry Developers Guide Page 54 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Name Purpose File

xxx.ThreeColumn Used for
standard three
column layout

/sites/xxx/layouts/xxx.ThreeColumns.ascx

xxx.Frontpage Used on the
front page of
the site

/sites/xxx/layouts/xxx.FrontPage.ascx

4.4 The Runtime Engine

The Foundry Runtime Engine is designed to work with multiple servers, but in the current
version it only has functionality implemented for one local server. You can get access to
all runtime objects from a server object. To get a local server user the current property
from the instance of the ServerManager object you can use the following:
Server local = ServerManager.Instance.Current;

or
Server local = MSS.Context.Server;

Sitecore Sitecore Foundry Developers Guide Page 55 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The Server object contains the cache manager, global and system dictionary, IIS
manager, site, site type, site template, skin package and module managers. See the
class diagrams below.

Sitecore Sitecore Foundry Developers Guide Page 56 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The following image is a representation of the server components.

This table introduces developers to the most common Sitecore Foundry classes

Class Description

Context Holds information about the current state.

ServerManager Manages all sitecore foundry servers.

Server Represents a sitecore foundry server. You can get access to all
runtime object from a sitecore fondry server using this object.

SiteContextManager Represents a manager of sitecore fourndry sites.

SiteContext Represents a sitecore foundry site. All sites is located under
the /sitecore/content/Sitecore Foundry/Websites item.

LicenseManager Represents a License manager which gets access to user
license information.

SiteTypeManager Represent a site type manager which give access to all site
types.

SiteType Represetn a site type. Provides access to site type properties.

SecurityManager Represents a site security manager. Provides methods for work
with site users and groups.

Sitecore Sitecore Foundry Developers Guide Page 57 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Class Description

Dictionary Repsesents one level of the dictionary. Ream more about four
dictionary levels in the Administration guide document.

Settings Provides access to setting from mss.config and web.config file.

ModuleManager Represents a manager of sitecore foudnry modules. Gives
access to all modules from server.

Module Represents a module. Provide access to module properties.

SkinPackageManager Provides access to skin packages and skins.

You can get access to all Runtime object you can through MSS.Context class.

The table described bellow show some methods of the MSS.Context class.

Class Description

Server Gets the current server.

Language Gets the current language.

Item Gets the requested item.

CurrentDatabase Gets the currect database.

ContentDatabase Gets the content database. It is the database where is stored all
content of sites. All settings and content is stored in this
database. Usually it is the database “master”.

Site Get the current site. Site is computed by host name.

Dictionary Get the instance of the DictionaryManager class. You can get
dictionary texts use this object.

4.4.1 The Server class.

The server class contains all objects from the selected server. In future versions sitecore
foundry API will allow you to work with different sitecore foundry servers from different
computers. But for now it enables you to work only with one server. Use the
MSS.Context.Server static method to get the current server object.

The methods from the Server object are described below.

Class Description

Sites Gets the server site context manager as a
MSS.Sites.Contexts.SiteContextManager. This class is used to
work with sitecore foundry sites.

SiteTypes Gets the server site type manager as a
MSS.Sites.Types.SiteTypeManager object. This class is used
to work with site types.

Domain Gets the security domain as a Sitecore.SecurityModel.Domain
object. Sitecore Foundry use one security domain for all sites,
you can get this domain through this property.

Sitecore Sitecore Foundry Developers Guide Page 58 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Class Description

IISManager Gets the instance of the server iis manager as a
MSS.IIS.IISManager object. You can work with iis from the
selected server through this object.

LicenseManager Gets the server license manager as a
MSS.Licenses.LicenseManager object.

SystemDictionary Gets the system dictionary as a MSS.Dictionaries.Dictionary
object. It is dictionary which contains system level of dictionary.
Read more about dictionary in the Administration Guide
document.

GlobalDictionary Gets the global dictionary as a MSS.Dictionaries.Dictionary
object. It is dictionary which contains global level of dictionary.

ModuleManager Gets the server module manager as a
MSS.Modules.ModuleManager object.

Settings Gets the server settings as a MSS.Configuration.Settings
object.

SkinPackages Gets the server skin package manager as a
MSS.SkinPackages.SkinPackageManager object.

4.4.2 SiteContextManager and SiteContext

The site manager enables a user to work with Sitecore Foundry sites. The user can
create, delete and manage sites using this class.

Examples:

get all Sitecore Foundry sites.

List<SiteContext> sites =

MSS.Context.Server.Sites.GetSites(MSS.Context.CurrentDatabase);

get the current site:

MSS.Context.Server.Sites.GetCurrentSite();

SiteContext represents a Sitecore Foundry site.

Some of the SiteContextManager methods are described below.

Class Description

CreateSite Creates a new site.

DeleteSite Deletes a site.

GetSiteByHostName Gets a site by host name.

GetSiteBySiteName Gets a site by site name.

GetCurrentSite Gets a current executed site.

GetSites Gets all sites.

GetSiteRootItem Gets site root item.

Some of the SiteContext methods are described below.

Sitecore Sitecore Foundry Developers Guide Page 59 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Class Description

SiteId Get unique id of the site.

HomeItem Gets site home item.

MediaLibrary Gets access to the site media library.

LocalDictionary Gets site dictionary. It is the fourth level dictionary.

Settings Gets access to site settings.

SiteData Gets access to wizard saved settings.

Status Gets a site status. It can be Running, Stopped, Updated or
UnInitialized.

Wizard Gets a site wizard as a MSS.Sites.Wizards.Wizard object.

GetAliases Gets site aliases.

SecurityManager

The Securitymanager class provides access to site security. It contains the methods
described below.

Class Description

CreateGroup Creates a new security group for a site.

CreateUser Creates a new site user.

DeleteGroup Deletes a group.

DeleteUser Deletes a user.

GetGroups Gets all site security groups.

GetAllUsers Gets all site user.

Login Login a user to a site.

SetRestrictAccess Sets restricted access to an item. After than not all user will
have access to the item.

RemoveRestrictAccess Removes restricted access from an item.

UserIsExists Checks whether user is exist.

GroupIsExists Checks whether group is exist.

4.4.3 SiteTypeManager and SiteTypes

Each site is based on a site type. Site types hold information about the site template, the
site wizard, site administration and global menus, available modules, initial security
settings for a new site, and the site type level of the Dictionary and Settings.

Some methods from SiteTypeManager are described below.

Class Description

DuplicateSiteType Creates a new site type by coping from another site type.

DeleteSiteType Deletes a site type.

Sitecore Sitecore Foundry Developers Guide Page 60 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Class Description

GetSiteTypes Gets all site types.

GetSiteType Gets a site type by site type name or site type id.

Some methods from SiteType are described below.

Class Description

Title Gets a site type title.

SiteTemplate Gets a site template as a MSS.Sites.Templates.SiteTemplate
object.

AdministrationMenu Gets a site type administration menu.

GlobalMenu Gets a site type global menu.

Wizard Gets a site type wizard. All sites based on the site type will
use this site wizard to configure site.

Modules Gets list of available modules.

Dictionary Gets dictionary of site type level.

4.4.4 Dictionary and DictionaryManager.

Sitecore Foundry has a four-level dictionary. At the first level the system tries to get the
text from the local site dictionary. If it does not exist, the system tries to get the text from
the site type dictionary, then the global dictionary and finally the system dictionary.

The Dictionary class represents one level of these dictionaries. DictionaryManager
uses four dictionary levels to translate text.

Each dictionary item has four fields:

 Text – The text.

 Hint – – This is used in all dictionary web controls. It represents the tool tip text.

 Tabindex – This is used in all dictionary web controls. It represents a tab index
for the control.

 Accesskey – This is used in all dictionary web controls. It represents an access
key to the control.

To translate the text use an instance of the DictionaryManager object. A dictionary
manager uses all four dictionaries when translating text – site, site type, global and
system dictionary.

To get the dictionary manager use the static method MSS.Context.Dictionary.

Methods from the DictionaryManager are described below.

Class Description

GetText Gets a text by a key and a language.

GetHint Gets a hint text by a key and a language.

GetTabIndex Gets a tab index by a key and a language.

GetAccessKey Gets a access key by a key and a language.

Sitecore Sitecore Foundry Developers Guide Page 61 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.4.5 ModuleManager and Module

To work with modules use the module manager.

Methods from the ModuleManager are described below.

Class Description

GetModules Gets a list of modules which is on a item.

GetModules Gets a list of available modules for a site type.

IsAvailable Returns whether module is available for a site.

In a Module class there is only one important method – GetRendering. This method
returns a list of controls which will render the module on a page.

4.4.6 SkinPackageManager, SkinPackage and Skin

Skin packages are used to set a quantity of available settings for a site. The skin is built
from a set using these settings. Use SkinPackageManager to work with skins and skin
packages.

Methods from the SkinPackageManager are described below.

Class Description

GetSkinPackage Gets selected skin package for a site.

GetSkinPackage Gets skin package by id.

SetSkinPackage Sets a skin package to a site.

SetSkin Applies skin settings to a site.

GetAllSkinPackages Gets all skin packages in the solution.

GetSkinPackages Gets all available skin packages for a site.

Some methods from the SkinPackage are described below.

Class Description

Title Gets skin package title.

Group Gets skin package group.

DefaultSkin Gets default skin.

Skins Gets all skins for the skin package.

Identities Gets all identity images.

Tops Gets all top images.

Buttons Gets all button images.

ColumnBars Gets all columns bar images.

TopBars Gets all top bar images.

ContentBars Gets all content bar images.

BottomBars Gets all bottom bar images.

Sitecore Sitecore Foundry Developers Guide Page 62 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.5 Security

Sitecore CMS by default is configured with two security domains: Sitecore and
Extranet.

4.5.1 The Sitecore domain

This domain is primarily for internal security. It handles security for the Sitecore client.
This domain stores information about content editors, administrators, developers and
other members of the team who build and maintain the site.

4.5.2 The Extranet domain

This domain is used for site security. It defines who can access the information published
on website.

4.5.3 Foundry domains

Sitecore Foundry, however, is configured with only one domain – Sitecore. All users and
group are stored in this domain.

Two folders are created for each site in the security database. When a site is created,
folders for the site roles and for the site users are created.

/sitecore/MSS Groups/site_name

Here are stored all the roles for the site with name site_name.

/sitecore/MSS Users/site_name

Here are stored all the users for the site with name site_name.

Sitecore Sitecore Foundry Developers Guide Page 63 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.5.4 Users, Groups and Roles

Site roles and users are stored with the following naming format:

site_name.role_name

site_name.user_name

Example: for the Admin user in the site MyNewBlog the site user will be store in

/sitecore/MSS Users/MyNewBlog

As the user MyNewBlog.Admin

The Editor role will be stored in

/sitecore/MSS Groups/MyNewBlog

As the role MyNewBlog.Editor

To login on the site the user should enter the username Admin, but to log in to the client
interface a user should enter user MyNewBlog.Admin.

4.5.5 Setting up the Local Admin Rights

Each site type specifies a list of the default users and roles which will be created when a
new site is created.

Sitecore Sitecore Foundry Developers Guide Page 64 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Under the Groups item are stored the default roles which will be created for each site
based on the site type and under the User item are stored the default users, which will
be created for each site based on the site type.

A group item has the following fields:

Global users

This specifies the list of the global users who will be a member of the created role when
a new site has been created.

In the image above the global admin user will have the local admin roles for each site
created using this role.

CopyRightsFrom

This field specifies the roles on the site templates, rights from these roles will be copied
to a new role when a site is created.

AdditionalRoles

This field specifies a list of additional roles, which will get the new role. The new role will
be a member of these roles.

For example: If a site type has a site template. Each local admin of the site, based on
this site type should have administrator rights to his site root item and should not have
administrator rights to any other site’s root items. In this case we add to the local site root
in the site template administrator rights for the Abstract Admin role.

Sitecore Sitecore Foundry Developers Guide Page 65 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Then we add to the Admin group in the CopyRightFrom field the Abstract Admin role

For each new site that will be created the Local admin role and this role will have
Administration right to own site root, this right will be copied for the role.

In the second case all users of the Local admin role should have read/write right to some
item in the Administration menu. We add the read/write right to the item for the MSS
Local Admin user

And add the MSS Local Admin user to the AdditionalRoles field for the Local admin.

All new local admin roles will then be members of the MSS Local Admin roles and the
users will have write access to the item in the administration menu.

4.6 The structure of a site

This section deals with the basic structure of a Foundry site.

All individual sites are located at:

/sitecore/content/mss content/Websites

Sitecore Sitecore Foundry Developers Guide Page 66 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The site item has the following fields:

Name Purpose

URL The domain name used to match and resolve which site is shown.
See “Sitecore Foundry installation” whitepaper for more detail.

Admin Name or initials for the local website administrator

E-mail Local website administrator’s e-mail

Remote For internal use

Status Determines site status. Can be Running, Stopped, Updated.

Type Specifies which site type the site is running on

Sitecore Sitecore Foundry Developers Guide Page 67 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.7 Sitecore Foundry Maintenance Service

Sitecore Foundry provides end user with web service which enables to user manage
sites. The web service is located at

/sitecore 20modules/MSS/Services/MaintenanceService.asmx.

You are able to create, delete, backup and restore a site, read and set a sites status,
check whether a site exists, read all sites and install packages on the server.

All service’s methods require a valid Sitecore user to perform operations on the server.
You should pass an instance of the Sitecore.SecurityModel.Credentials class with a
sitecore administrator user to these methods.

Below is an example of the use of an instance of the Credentials object.

MaintenanceService service = new MaintenanceService();

Credentials credentials = new Credentials();

credentials.UserName = "Administrator";

credentials.Password = "Password";

Sitecore Sitecore Foundry Developers Guide Page 68 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

string []sites = service.GetSites("master", credentials);

4.7.1 Creating a new site

Use the CreateSite function to create a new site, as in the example below.

string CreateSite(string siteTypeID,

 string siteName,

 string hostname,

 string administratorInitials,

 string administratorEmail,

 string defaultLanguage,

 bool waitForPublish,

 Credentials credentials)

where:

siteTypeID – The ID of a site type (The ID or name of the site type item),

siteName – The web site name,

hostname – The hostname for the new site,

administratorInitials – The local site administrator’s initials,

administratorEmail – The local site administrator’s e-mail,

defaultLanguage – The site’s default language,

waitForPublish – Whether to wait for the publish or return control without waiting for the
end of the publish action. If you use the server in live mode, the publish will not be
performed, so the argument is unimportant,

credentials – The user’s credentials.
The function returns a site creation report. If the creation process has failed the function
throws the System.Exception.

4.7.1.1 Example;

The code used to create a new site is;

MaintenanceService service = new MaintenanceService();

Credentials credentials = new Credentials();

credentials.UserName = "Administrator";

credentials.Password = "Password";

service.CreateSite("{D18E2C18-B94F-44CF-98FE-1B9945C9EE7C}", "news",

"news.sitecorefoundry.com", "john smith", "email@provider.domain", "en", false,

credentials);

4.7.2 Deleting a site

Use the DeleteSite method to delete a site.
void DeleteSite(string siteName, Credentials credentials)

where;

siteName – The web site name,

credentials – The user’s credentials.
If the site does not exist the method throws the System.Exception.

Sitecore Sitecore Foundry Developers Guide Page 69 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

4.7.3 Checking to see if a site exists

Use the SiteExist function to check whether a site exist or not.
bool SiteExist(string siteName, Credentials credentials)

where;

siteName – The web site name

credentials – The user’s credentials

4.7.4 Backup and restore a site

Use the BackupSite method to backup a site and the RestoreSite to restore a site from
a site backup.
void BackupSite(string siteName, string backupName, Credentials credentials)

void RestoreSite(string backupName, Credentials credentials)

where:

siteName – The web site name

backupName – The name of the new backup or the name of the backup to be restored.

credentials – The user’s credentials

4.7.4.1 Example;

Backup a site:
service.BackupSite("news", "news backup 070115 18.00", credentials);

Restore a site;
Service.RestoreSite(“news backup 070115 18:00”, credentials);

4.7.5 Work with packages

Sitecore Foundry maintenance web service provides you with a few methods for working
with packages. Using these methods you can generate a new package from the package
project, install a package and get all the available packages from the server.

 To return a list of packages from the package folder;

string[] GetAvailablePackages(Credentials credentials)

 To install a package on the server.

string InstallPackage(string packageFileName, Credentials credentials)

This function enable you install a package from any place on the server and not
just from the packages folder. The function returns an install log. If the function
fails it throws a exception.

4.7.5.1 Examples:

Installing a package

service.InstallPackage("/data/packages/items.zip", credentials);

Sitecore Sitecore Foundry Developers Guide Page 70 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Generating a new package

void GeneratePackage(string solutionFile, string packageFile, Credentials

credentials)

service.GeneratePackage("/data/packages/mss.layouts.xml",

"/data/packages/mss.layouts.zip", credentials);

where;

solutionFile – The file to be packaged

packageFile – The name for the new package file

credentials – The user’s credentials

This code generates a new package from a package project file.

Sitecore Sitecore Foundry Developers Guide Page 71 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 5

The wizard and skin packages

The Website Wizard is the part of a Foundry site that allows the Local Administrator to
customize his sites appearance to give it that unique look and feel. However, the wizard
itself is also customizable and can vary a great deal from one site type to another.

5.1 Introduction

A Website Wizard consists of a number of steps and each step in the Wizard contains
information displayed in the user version of the Wizard. The Wizard definition for the
Standard site type is located at

/sitecore/content/mss content/Site Creation/Wizards/SCX.SCX

Sitecore Sitecore Foundry Developers Guide Page 72 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

A step also keeps a reference to a page that is the actual wizard page containing the
forms, color pickers and image pickers displayed on the individual steps.

Having the wizard steps with layout and text defined in one place and the functionality
defined in another place, makes it possible to change or customize the layout and design
of the wizard as well as change the text of the steps in the wizard between two different
Site types.

The Wizard delivered with the Standard Sitecore Foundry site uses three standard skin
packages Children, Corporate and Cultural, which are all free designs. Each of the
default skin package has six skins defined for it.

The Wizard uses the definition of the skin packages and skins to select from on the
individual wizard steps. For more information about adding new wizard steps see “5.8
Customizing the wizard”, on page 82.

5.2 Skin Packages

In Sitecore Foundry a web-site consists primarily of three elementary components: The
layouts, the renderings and the skins. Layouts and renderings are standard Sitecore
components and the skins are a part of Sitecore Foundry. Layouts define the size and
position of the different elements on the web-page, while the renderings define the
individual elements, by generating the HTML sent to the clients.

A skin package consists of a number of graphic elements, colors palettes and skins. A
skin is a predefined selection of graphic elements for background, top bar and coloring.
The graphic elements are picked from the elements in the package. There are no limits

Sitecore Sitecore Foundry Developers Guide Page 73 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

to how many skins that can be defined from a package, but usually a number of skins
are predefined by the designer. The skin packages are located at:

/sitecore/content/mss content/Administration/Lookup tables/Skin packages

The skins have two kinds of interfaces. The developer uses the Sitecore client to
configure what skins are possible. The end-users use the Sitecore Foundry Wizard to
configure what skin elements to use on the web-site.

A skin package can be used on different layouts, e.g. a web-site with a level 1 top menu
and left menu for levels 2+, could easily use the same skin as one with only a left menu.
In theory the visual differences could be larger than that; the layouts and the skin just
have to be designed with that in mind.

Sitecore Sitecore Foundry Developers Guide Page 74 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.3 Skin packages and site types

Since skin packages may differ a great deal in design, it is possible, to have skin
packages that are not compatible with the same layouts. There could be a layout that is
designed for a widescreen high resolution monitor (1680x1050 pixels) and another layout
designed for a basic 800x600 pixel monitor. These would most probably require different
skin packages, since image sizes may vary in both size and shape.

On a Site type it is possible to select which of the installed skin packages is compatible
with the Site type. The definition is held in a field on the Ste Type root item in the field
Site wizard.

The wizard will, in its standard form, show all compatible skin packages. A single site has
a reference to the Skin package that it is defined from. This data is stored against the
item

/sitecore/content/mss content/Websites/Site Name/Wizard Settings/Skin.Settings

The skin is defined within the package itself. When a new site is created the skin is taken
from the defaults for the site type.

5.4 Skin Fields

This section describes the fields defined for the Skin items located at:

sitecore/content/mss content/Administration/Lookup tables/Skin packages/

5.4.1 Skin package data items

The fields for this item are as follows:

Sitecore Sitecore Foundry Developers Guide Page 75 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.4.1.1 Title

This is the name of the skin package.

It will be displayed under the image of the skin package on the Design page of the
Website Wizard

5.4.1.2 Group

This field is used to group the skin packages together on tabs with each set of related
skins under a common group name.

This name is used for the title of the tab which holds the skins.

5.4.1.3 Default skin

This is the default skin selected on the Wizard page following the selection of the skin
package.

Sitecore Sitecore Foundry Developers Guide Page 76 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

If no default skin is selected the package will automatically default to the first available
skin.

5.4.1.4 Stylesheet

This is a relative path to a CSS Style file containing styling corrections for the skin
display.

Using the same skin package on different site types may require corrections in order to
be displayed correctly. This stylesheet is where those corrections would be placed. This
allows you to use the same skin package on different site types, giving a further layer or
flexibility.

5.4.1.5 Wizard stylesheet

This is a relative path to a CSS stylesheet file containing styling corrections for the
display of the skin package on the Website Wizard.

Different wizard designs might require corrections in order for the skin package content
to be displayed as required in the wizard. Skin packages might differ slightly and may
need small corrections to be displayed correctly.

Sitecore Sitecore Foundry Developers Guide Page 77 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.4.1.6 Sitetypes

This is where you can associate the site types that are compatible with this wizard.

5.4.2 Skin package components

Each skin package contains a number of folders which contain the data selectable in
each step of the Website Wizard. These steps are not fixed and alterations and additions
can be made by developers. For more information see 5.8 Customizing the wizard”, on
page 82.

These skin package components are located at:

/sitecore/content/mss content/Administration/Lookup tables/Skin packages/skin
name/

The components of the standard skin package are as follows.

5.4.2.1 Backgrounds

This folder contains a set of background images used on the standard wizard for the
entire site background and column backgrounds.

Each item contains three fields.

Sitecore Sitecore Foundry Developers Guide Page 78 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

These are Title, File and Preview file. Title is the title of the image. File and Preview file
are relative pointers to the image linked with this item.

5.4.2.2 Bars

This folder stores sets of images used for the bottom bar, column bars, content bars and
the top bar. Each of these is a folder item containing color locations as in the
backgrounds folder.

5.4.2.3 Buttons

This folder consists of a set of folders containing color sets for images used as
backgrounds on buttons, menu bullets and pointers.

Sitecore Sitecore Foundry Developers Guide Page 79 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.4.2.4 Colorpalettes

This folder consists of color palettes of different sizes and number of colors used in
choosing colors for the various background and text colors on a website.

5.4.2.5 Previews

This folder consists of a set of thumbnail snapshots of a site. One for each skin.

Sitecore Sitecore Foundry Developers Guide Page 80 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.4.2.6 Skins

This folder contains a set of predefined settings for each skin for the selected skin
package. In the Website Wizard these settings are used along with a preview thumbnail
to allow the user to see how the site will look if they choose the selected skin

5.4.2.7 TopImages

This folder consists of a set of images which can be used for the top bar.

Sitecore Sitecore Foundry Developers Guide Page 81 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.5 Preview images

What is displayed on the resulting website and what is shown in the wizard are two
different things. Therefore some of the images also have a preview image associated
with them that is used in the wizard to better illustrate how it looks. For example,
background images can be small images with dimensions of 2x4 pixels or 1x1200 pixels.
Instead of stretching these images to make them more easily visible in the wizard, a
preview image with dimensions of 143x53 pixels is supplied for each image for easy
viewing.

5.6 Skin package files

The images and color palettes defined in the skin packages all have a physical file
associated and located on a local hard drive in the directory /skin packages.

In the case of the standard skin packages they are located in the directory /skin
packages/mss. The directory structure resembles the structure of the skin packages in
Sitecore content. A suffix _preview is used as a naming convention for preview images
for instance the image Image001.jpg would have an associated preview image of
Image001_preview.jpg. All images are referenced by the relative path from the root of
the site.

5.7 Creating your own skin package

Sitecore foundry also supports the creation of complete custom skin packages. For more
information on creating your own skin package see the document How to create a skin
package.

Sitecore Sitecore Foundry Developers Guide Page 82 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.8 Customizing the wizard

The wizard can be customized in several ways:

 It is possible to hide or remove steps not needed.

 It is possible to add new steps configuring settings not supplied by the default
Foundry site.

 It is possible to change the CSS styling output used on the site.

 It is possible to change the CSS styling used in the wizard

5.8.1 Hiding or Removing Unwanted Steps

To hide or remove unwanted steps you can take the following action.

5.8.1.1 Hiding Steps

To hide a Wizard step you just need to click the NotVisible check box at the bottom of
the wizard step.

Then save, and publish the item and it will not be visible in the users Website Wizard.

Note: It is not advisable to hide the finish page of the wizard as users will then have no
way to save any alterations they make to the skin.

Sitecore Sitecore Foundry Developers Guide Page 83 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

5.8.1.2 Removing Steps

Wizards are all stored globally at:

/sitecore/content/mss/Site Creation/Wizards/

To remove a Wizard step you can just delete the step from the definition. However, this
leaves the step definition, which is stored at:

/sitecore/content/mss/Administration/Lookup Tables/Wizardsteps/

Note: This is the safest way to remove unwanted wizard steps. If you remove the step
definition then you risk corrupting the steps in other wizards.

5.8.2 Adding Steps

In order to add a new step to the wizard, follow these steps:

1. Create the required sublayout in Sitecore.

2. Create a new step document.

3. Add the sublayout to the new step document.

4. Add the sublayout to the standard layout WizardMainLayout.

5. Add the sublayout to the sublayout WizardMainLayout.

6. Add the sublayout to the rendering MSS.Wizard.Document.

For the new settings to be stored, make a duplicate of the system template
MSS.Site.Data or MSS.Site.Skin.Settings and replace it on the path home/wizard
settings under the site template. Both of these templates can be found at:

/sitecore/templates/MSS/

Sitecore Sitecore Foundry Developers Guide Page 84 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The difference between the two is that MSS.Site.Skin.Settings is used for the skin
settings read from the predefined skins every time a new skin is chosen.

Whereas, MSS.Site.Data is used to store input from the user such as contact
information and system settings.

The wizard uses a .NET class to implement the interface ICssFactory. The used class is
found by instantiating it from the assembly name and type name given on the wizard’s
front page item.

5.9 Wizard generated CSS classes

By default the wizard generates the following css classes.

Class name Purpose Wizard step Using fields

body.areaBody Sets the browser
background color
or image

step
“Background”

""Background color",
“Background image”.

div.areaSublayout Sets the column
background color
or image

step “Column
borders”

“"Columns background
color", “Columns
background image”.

table.sublayoutTa
ble td.leftcol

Sets the left
column
background color

step “Column
colors“

"Column left color"

table.sublayoutTa
ble td.centercol

Sets the center
column
background

step “Column
colors“

"Column center color"

Sitecore Sitecore Foundry Developers Guide Page 85 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Important: These class names are subject to change in the future, you can use your
own names by implementing the ICssFactory interface and setting the assembly name
and the type name on the wizard. For more information, see the section “Chapter 5 The
wizard and skin packages”, on page 71.

table.sublayoutTa
ble td.rightcol

Sets the right
column
background color

step “Column
colors“

"Column right color"

table.sublayoutTa
ble td.frontcol

Sets the frontpage
center column
background color
depending on

step "Front
page“

"Frontpage Column color"

div.areaIdentity Sets corporate
identity image or
background color

step "Corporate
Identity"

"Identity color", "Identity
image", "Uploaded identity
image"

div.areaTopImage Sets topbar image
or background
color

Step
“Individual
Identity”

“"Top image", “Top color”,
“Uploaded top image”

div.MssNavigation
div.navButtons
input

Sets button image
background and
width

Step “Buttons
and icons”

"Button set"

img.MssListArrow Sets bullet image
on menu items

Step “Buttons
and icons”

"Button set"

div.MssSubMenu Sets bullet image
on menu items

Step “Buttons
and icons”

"Button set"

div.areaBreadcru
mb

Sets image used
for top bars

Step “Choose
bar design”

"Topbar image"

div.areaFooter Sets image used
for bottom bars

Step “Bottom
and content
bars”

"Bottombar image"

Sitecore Sitecore Foundry Developers Guide Page 86 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 6

Appendix A: Configuration

This Appendix deals with the configuration of Foundry using the standard Sitecore
web.config and the Foundry file mss.config.

6.1 Configuration

Sitecore Foundry has its own configuration file called mss.config. However, it still ties in
some functionality to web.config.

6.1.1 MSS.config

A new file similar to the .net web.config file is supplied by Sitecore Foundry entitled
mss.config. Here is an example of how it looks.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <mss>

 <settings>

 <setting name="Sites.SingleDatabase" value="true" />

 <setting name="UseFriendlyURL" value="true" />

 <setting name="SMTPServer" value="mail.server.net" />

 <setting name="MainSiteAddress" value="localhost" />

 <setting name="MainSiteDescription" value="MSS" />

 <setting name="SiteTemplate" value="mss.site" />

 <setting name="ExceptionMailAddress" value="support@sitecorefoundry.com"

/>

 <setting name="PasswordLength" value="8" />

 <setting name="GlobalUsers" value="global admin|sitecorefoundry" />

 <setting name="UpdateIISAlias" value="true" />

 <setting name="IndexUpdateInterval" value="00:10:00" />

 <setting name="DefaultLanguage" value="en" />

 <setting name="SecurityDomainName" value="sitecore" />

 <setting name="SiteUpdatedPage" value="/Global/SiteUpdated" />

 <setting name="DomainNameRegEx" value="^[A-Za-z]([A-Za-z0-9])*((\.|-)[A-

Za-z]([A-Za-z0-9])*)*$" />

 <setting name="DeniedSiteNames"

value="sitecorefoundry|files|images|secure" />

 <setting name="BackupFolder" value="backups" />

 <!-- Initial site status - one of the next: Running, Stopped, Updated -->

 <setting name="InitialSiteStatus" value="Updated" />

 </settings>

 <securitySettings>

 <right name="ManageSecurity" allow="MSS Local Admin" deny="" />

 <right name="ManageWizard" allow="MSS Local Admin" deny="" />

Sitecore Sitecore Foundry Developers Guide Page 87 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 <right name="ContentEditing" allow="MSS Local Admin|MSS Local Editor"

deny="" />

 <right name="CanSeeBackend" allow="MSS Local Admin|MSS Local Editor"

deny="" />

 <!-- Managing modules -->

 <right name="CanSeeDataviewer" allow="MSS Local Admin|MSS Local Editor"

deny="" />

 <right name="ManagingNewsletterModule" allow="MSS Local Admin|MSS Local

Editor" deny="" />

 <right name="ManagingSMSModule" allow="MSS Local Admin|MSS Local Editor"

deny="" />

 </securitySettings>

 </mss>

</configuration>

Note: For changes to web.config pertaining to the accompanying modules see the
documentation for each of these modules.

6.2 Sitecore Foundry specific additions to web.config

Though Sitecore Foundry has its own mss.config file with Foundry specific settings, there
are still a number of places where the system hooks into the Sitecore environment.
These places in the web.config file are listed below:

6.2.1 <AppSettings>

 <add key=”configfile” value=”/mss.config”/>

This tells Sitecore foundry where to find the Sitecore Foundry settings file.

6.2.2 Item:saved Event Handlers

In the Item:saved the following event handlers are used.

 <handler type="MSS.Modules.EventCalendar.ItemHandlers.ItemMover,
MSS.Modules" method="OnItemSaved" />
Moves calendar event documents to the correct year and month folder based on
the date field value.

 <handler type="MSS.Modules.News.ItemHandlers.ItemHandler, MSS.Modules"
method="OnItemSaved" />
Moves a news documents to the correct year and month folder based on the date
field value.

 <handler type="MSS.Caching.CacheEventHandler, MSS.Kernel"
method="OnItemSaved" />
Clears the mss caches

 <handler type="MSS.Sites.Contexts.ItemEventHandler, MSS.Kernel"
method="OnItemSaved" />
Handles event for a site root item and changes sites list – adds or removes the
site to site list.

6.2.3 Item:deleted event handlers

 <handler type="MSS.Modules.EventCalendar.ItemHandlers.ItemMover,
MSS.Modules" method="OnItemDeleted" />
After an event is deleted this handler cleans the month and year folder

 <handler type="MSS.Modules.PictureSeries.ItemEventHandler, MSS.Modules"
method="OnItemDeleted" />

Sitecore Sitecore Foundry Developers Guide Page 88 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

When a user has deleted a picture series document with images this handler
deletes the images from the media library.

 <handler type="MSS.Caching.CacheEventHandler, MSS.Kernel"
method="OnItemDeleted" />
Removes the entity based on the deleted item from the MSS caches.

 <handler type="MSS.Caching.CacheEventHandler, MSS.Kernel"
method="OnItemDeleted" />
Removes the entity based on the deleted item from the MSS caches.

 <handler type="MSS.Sites.Contexts.ItemEventHandler, MSS.Kernel"
method="OnItemDeleted" />
Handles site root items and removes the site from site list.

6.2.4 Publish:end event handlers

 <handler type="MSS.Publishing.HtmlCacheClearer, MSS.Kernel"
method="ClearHtmlCache"/>
Clears html cache when publish has finished.

6.2.5 Pipeline processors

 <processor
type="MSS.WebSite.Components.Search.Native.InitializeNativeSearchIndexer,
MSS.WebSite" />
Initialize the search indexer that rebuilds the search indexes.

 <processor type="MSS.Publishing.PublishingWatcher, MSS.Kernel" />
Hides/shows some items for a user when the user change the
Sites.SingleDatabase setting (e.g. the Publish site menu)

 <processor type="MSS.SitecoreExtensions.Pipelines.SiteResolver, MSS.Kernel"
/>
MSS site resolver.

 <processor type="MSS.SitecoreExtensions.Pipelines.SecurityResolver,
MSS.Kernel" />
Does not allow a user without the CanSeeBackend rights to enter the Sitecore
client.

 <processor type="MSS.SitecoreExtensions.Pipelines.ItemResolver, MSS.Kernel"
/>
Represents the item resolver which hides the site from user when the site has the
Updated status.

6.2.6 Database changes

 <Engines.HistoryEngine.Storage>
<obj type="Sitecore.Data.$(database).$(database)HistoryStorage,
 Sitecore.$(database)">
…
</obj>
</Engines.HistoryEngine.Storage>
Adds the history engine to the web database. The engine is used to update the
search indexes.

Sitecore Sitecore Foundry Developers Guide Page 89 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

6.2.7 Indexes

 <index id="mssIndex" singleInstance="true" type="Sitecore.Data.Indexing.Index,
Sitecore.Kernel">
…
</index>
Adds the search index which is used to search on the web site.

6.2.8 Domains

Removes the Extranet security domain and changes the type of the Sitecore domain.

6.2.9 Processors

 <processor mode="on" type="MSS.SitecoreExtensions.Pipelines.Login,
MSS.Kernel" />
Does not allow login to the Sitecore client for a user with the CanSeeBackend
rights.

6.2.10 xslExtensions

 <extension mode="on" type="MSS.XslHelper.XslHelper, MSS.XslHelper"
namespace="http://www.sitecore.net/mss" singleInstance="true"/>
Makes the Sitecore Foundry specific help functions available in XSLT files

 <extension mode="on" type="MSS.XslHelper.XslDictionaryHelper,
MSS.XslHelper" namespace="http://www.sitecore.net/dic" singleInstance="true"/>
Makes dictionary functionality available in XSLT files

 <extension mode="on" type="MSS.Wizard.API.WizardXslHelper, MSS.Wizard"
namespace="http://www.sitecore.net/wizard" singleInstance="true"></extension>
Makes Sitecore Foundry specific help functions available in XSLT files for the
wizard

6.2.11 xslControls

 <control mode="on" tag="scx:image" type="MSS.Web.UI.XslControls.Image"
assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:label" type="MSS.Web.UI.XslControls.Label"
assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:link" type="MSS.Web.UI.XslControls.Link"
assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:flash" type="MSS.Web.UI.XslControls.Flash"
assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:DictionaryLink"
type="MSS.Web.UI.XslControls.DictionaryLink"
assembly="MSS.WebEngine"></control>

 <control mode="on" tag="scx:Breadcrumb"
type="MSS.Web.UI.XslControls.Breadcrumb" assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:text" type="MSS.Web.UI.XslControls.Text"
assembly="MSS.WebEngine"/>

 <control mode="on" tag="scx:html" type="MSS.Web.UI.XslControls.Html"
assembly="MSS.WebEngine"/>

Sitecore Sitecore Foundry Developers Guide Page 90 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Adds various xsl controls to xslt

6.2.12 controlSources

 <source mode="on" namespace="MSS.WebSite.Components.RecycleBin"
assembly="MSS.WebSite" />

 <source mode="on" namespace="MSS.Modules.Common.DataViewer"
folder="/sitecore modules/MSS/Modules/Common/DataViewer/Xaml" deep="true"
/>

 <source mode="on" namespace="MSS.Modules.Common.DataViewer"
folder="/sitecore modules/MSS/Modules/NewsLetter/Xaml" deep="true" />

 <source mode="on" namespace="MSS.Modules.Common.DataViewer"
folder="/sitecore modules/MSS/Modules/SMS/Xaml" deep="true" />

 <source mode="on" namespace="MSS.WebSite.Components.Reorganize"
folder="/sitecore modules/MSS/WebSite/Components/Reorganize" deep="false"
/>

 <source mode="on"
namespace="MSS.WebSite.Components.SecurityEditor.Codebeside"
folder="/sitecore modules/MSS/WebSite/Components/SecurityEditor/Xaml"
deep="true" />

 <source mode="on" namespace="Sitecore.Web.UI.XmlControls" folder="/sitecore
modules/MSS/Administration/Application" deep="true"/>

 <source mode="on" namespace="MSS.Web.UI.XamlControls"
assembly="MSS.WebEngine" />

 <source mode="on" namespace="MSS.Web.UI.WebControls"
assembly="MSS.WebEngine" />

Adds various xaml controls

6.2.13 References

 <reference>/bin/MSS.Modules.dll</reference>

 <reference>/bin/MSS.Administration.dll</reference>

 <reference>/bin/MSS.WebSite.dll</reference>

 <reference>/bin/MSS.WebEngine.dll</reference>

 <reference>/bin/Sitecore.AsyncUI.dll</reference>

 <reference>/bin/MSS.StatCenter.dll</reference>

Add assemblies to the xaml controls

6.2.14 Settings

 <setting name="WebStylesheet" value="/Sites/SCX.SCX/CSS/Design.css" />
Adds mss styles to the Rich Text Editor

6.2.15 log4net

 <appender name="MSS" type="log4net.Appender.SitecoreLogFileAppender">
…
</appender>
<logger name="MSS.Logging.Log" additivity="false">

Sitecore Sitecore Foundry Developers Guide Page 91 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

…
</logger>
Add the mss logger in log4net module.

6.2.16 http Modules

 <add type="MSS.Web.HttpModule, MSS.Kernel"
name="SitecoreFoundryHttpModule" />
Adds mss http module.

Sitecore Sitecore Foundry Developers Guide Page 92 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 7

Appendix B: Wizard styling output

The output from the wizard is generated by the aspx file “/sitecore
modules/MSS/wizard/ skins/ skincss.aspx”. A normal stylesheet link is placed in the
main layout file:

7.1 Link Example

An example of the code used in the stylesheet link is;

<html>

 <head>

 <link id="SkinCss" rel="stylesheet" type="text/css"

href="/sitecore modules/MSS/Wizard/Skins/SkinCss.aspx" />

 </head>

</html>

The sample output looks like this (generated by the default wizard ICSSFactory
implementation, see below):

body.areaBody {color: rgb(51,51,51);background-image: url(/Sitewizards/Sitecore

Express/Images/background/1/cust_background01.gif)}

div.areaIdentity {}

div.areaTopImage {font-size: ; color: ;background-image:

url(/Sitewizards/Sitecore Express/Images/topbar/1/cust_topbar01.gif)}

div.MssNavigation div.navButtons input {background-image:

url(/Sitewizards/Sitecore Express/Images/buttons/1/cust_btn03.gif); width: 104;

height: 17; font-weight: bold; font-size: 10px; color: white; font-family:

Verdana; cursor: hand; BORDER: 0px; background-color: Transparent;}

img.MssListArrow {background-image: url(/Sitewizards/Sitecore

Express/Images/buttons/1/cust_menupil03.gif); }

div.areaBreadcrumb {background-image: url(/Sitewizards/Sitecore

Express/Images/bars/1/cust_menubar01.gif)}

div.areaGlobal {}

div.areaSublayout {background-color: rgb(226,231,232)}

div.areaFooter {background-image: url(/Sitewizards/Sitecore

Express/Images/bars/1/cust_menubar01.gif)}

table.sublayoutTable td.leftcol {background-color: rgb(190,205,209)}

table.sublayoutTable td.centercol {background-color: rgb(190,205,209)}

table.sublayoutTable td.spacecol {}

table.sublayoutTable td.columnDivider {}

table.sublayoutTable td.frontcol {color: rgb(255,255,255);background-color:

rgb(104,131,138)}

table.sublayoutTable td.rightcol {background-color: rgb(190,205,209)}

table.sublayoutTable td.rightcol div.spotHead {background-image:

url(/Sitewizards/Sitecore Express/Images/bars/1/cust_menubar01.gif)}

Sitecore Sitecore Foundry Developers Guide Page 93 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

div.menuArrow {background-image: url(/Sitewizards/Sitecore

Express/Images/buttons/1/cust_menupil03.gif); }

div.menuArrowOn {background-image: url(/Sitewizards/Sitecore

Express/Images/buttons/1/cust_menupilselected03.gif); }

.SCXWizardFrontspot {background-image: url(/Sitewizards/Sitecore

Express/Images/images/1/spotA_01.jpg)}

.SCXWizardPage2Spot {background-image: url(/Sitewizards/Sitecore

Express/Images/images/1/spotB_01.jpg)}

.SCXWizardFrontImage {background-image: url(/Sitewizards/Sitecore

Express/Images/images/1/Front_01.jpg);width: 300; height: 100px}

.SCXWizardFrontImage img {width: 300; height: 104px;}

Sitecore Sitecore Foundry Developers Guide Page 94 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 8

Appendix C: Creating a new site type manually

This Appendix deals with the process of creating a new site type manually. If an existing
site type layout exists that resembles the new design to be implemented, it might be
more feasible to duplicate the site type and then make any necessary changes.

8.1 Required components

The following components must be duplicated as part of the site creation process:

 Templates

 Masters

 Layouts

 Sublayouts

 renderings

 Administration menu, see page Error! Bookmark not defined.

 Site template, see page Error! Bookmark not defined.

 Site type and make the changes to the settings and security setup, see page
Error! Bookmark not defined.

All the existing elements of a site type should be prefixed with the site type name.

As an example the template

MSS.DocRef

Should be renamed to

SiteTypeName.DocRef

Remember to copy the files for layouts, sublayouts and renderings or make them from
scratch.

One of the most difficult areas when dealing with duplicating Sitecore components is
updating the Sitecore information on each of the components.

The following settings:

 Templates

 Masters and Layouts

Sitecore Sitecore Foundry Developers Guide Page 95 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 Sublayouts

 Rendering

Should be replaced with the new duplicated settings on the Sitecore items in the
following places:

 The new duplicated Administration menu

 The new duplicated Site template

 The new duplicated master items

 The new duplicated templates items.

Sitecore Sitecore Foundry Developers Guide Page 96 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

In addition the following needs to be checked:

 The new duplicated renderings and sublayouts have to replace the old ones
which are explicitly specified on the duplicated layouts and sublayouts.

 Binding to Code-behind files has to be checked and updated.

 CSS links and image files specified on layouts, sublayouts and renderings have
to be replaced.

Use:

 The dictionary for all language dependent texts shown on the site that is not
stored on the documents. For that purpose use the xsl-helper extension or the
label xsl-control. On layouts and sublayouts use the custom controls: text, label,
button etc.

 The classes SitePage and SiteControl to make any new layouts and sublayouts
inherit from these.

 Xsl helper functions when using xsl renderings and you need some site
information, e.g. the home node.

8.1.1 Making A New Site Type From Scratch

To make a new site type Sitecore strongly recommends that you duplicate an existing
site type and then make necessary changes. However, it is possible to create one from

Sitecore Sitecore Foundry Developers Guide Page 97 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

scratch. You need to start by breaking the site up into individual and logical components.
The following are standard Sitecore guidelines for building a site:

 Create layouts. Remember to use the layout groups functionality.

 Create sublayouts.

 Create renderings.

 Place the sublayouts and renderings on the layouts and sublayouts.

 Create templates.

 Create masters based on the templates and set the available masters on them.

 Setup the layout and rendering information on the templates and masters.

 Create a site template. Remember the content item “global” with its global items
used by built-in modules. It might be easier to copy from an existing site template
and change the Sitecore information such as masters, layout and renderings.
Also remember the content item “Wizard settings” with the wizard related settings
documents.

 Create a new administration menu. Copy it from an existing one. Then make the
changes to masters, layout and rendering information on the menu items if
needed.

 Create the site type including the system and module settings and configure the
site type properties, see section “The wizard ”, page 71.

 If needed create a new wizard configuration and skinpackage, see section “The
wizard ”, page 71 .

 If necessary create a new implementation of the ICSSFactory for the wizard to
use.

Important: When creating the new Sitecore components, remember to prefix the names
with the new site type name, in order to isolate the components from the existing ones.

Sitecore Sitecore Foundry Developers Guide Page 98 of 98
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 9

Appendix D: Standard website sizes

This appendix gives the standard sizes used for columns and spacing in Sitecore
Foundry.

9.1 Standard Sizes

The following are the standard sizes used in Sitecore Foundry for various parts of the
web site display.

Website width: 760 pixels

Left column width: 201px

Center column width:

Right column width: 201px

Center image width: 340px

Space between columns: 6 px

Spot image width: 181px

Center image width (two column layout): 540

Top image: 760 x 74px

Identity image: 760 x 66px

